

JW1660M/JW1660A JW1660B/JW1660C

Isolated Flyback LED Driver Regulator

DESCRIPTION

JW1660M/JW1660A/JW1660B/JW1660C(JW166 0X series) is a primary side control constant current regulator with high current accuracy which applies to isolated flyback LED drivers. Operating in the discontinuous conduction mode makes it high efficiency and low radiation. Patented algorithms ensure good current accuracy and excellent line/load regulations.

JW1660X series is supplied from the line directly without auxiliary winding or external capacitor, which can lower the system BOM cost.

With unique sampling techniques, JW1660X series has multi-protection functions which can largely enhance the safety and reliability of the system, including LED open protection and over-temperature protection.

Company's Logo is Protected, "JW" and "JOULWATT" are Registered Trademarks of Joulwatt Technology Co.,Ltd.

TYPICAL APPLICATION

AC IN O

echniques, JW1660X n functions which can y and reliability of the open protection and n.

FEATURES

•

•

•

.

No Auxiliary Winding

Universal Input

DCM Operation

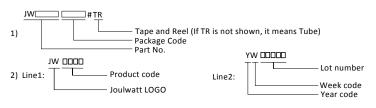
High Efficiency

SOP7 Package

APPLICATIONS

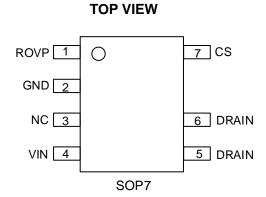
LED Driver

LED Open Protection


Over-temperature Protection

Excellent Line/load Regulation

ORDER INFORMATION


ſ					
	DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾	ENVIRONMENTAL ³⁾	
	JW1660MSOPA#TR	SOP7	JW1660M YW	Green	
	JW1660ASOPA#TR	SOP7	JW1660A YW 🗆 🗆 🗆	Green	
	JW1660BSOPA#TR	SOP7	JW1660B YW	Green	
	JW1660CSOPA#TR	SOP7	JW1660C YW 🗆 🗆 🗆	Green	

Note:

3) All Joulwatt products are packaged with Pb-free and Halogen-free materials and compliant to RoHS standards.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATING¹⁾

CS Voltage0.3V to 5V ROVP Voltage0.3V to 5V DRAIN Voltage
DRAIN Voltage 650V
Junction Temperature ²⁾³⁾
Storage Temperature65°C to +150°C

 θ_{JC}

 θ_{JA}

RECOMMENDED OPERATING CONDITIONS

VIN Voltage	630V
DRAIN Voltage	600V
Operating Junction Temperature	

THERMAL PERFORMANCE⁴⁾

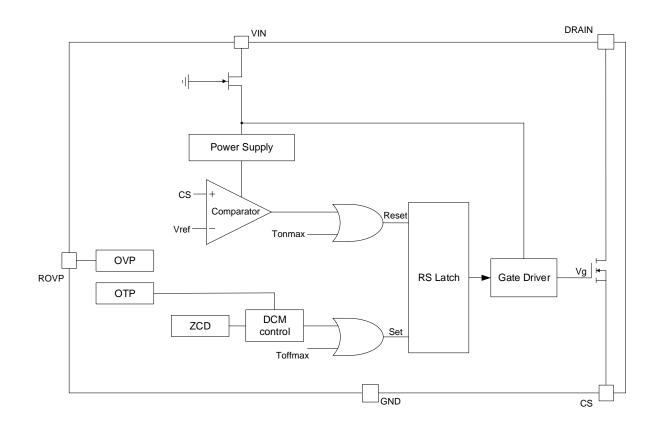
Note:

1) Exceeding these ratings may damage the device. These stress ratings do not imply function operation of the device at any other conditions beyond those indicated under RECOMMENDED OPERATING CONDITIONS.

- 2) The JW1660X series includes thermal protection that is intended to protect the device in overload conditions. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

<i>T</i> _A =25 ℃, unle	ss otherwise state	d						
I	tem	Symbol	Condition	Min.	Тур.	Max.	Units	
Threshold of VIN	Power On	Vin_on	V _{IN} rising	13	14	15	V	
VIN Quiescent Current Reference Voltage Maximum On Time		la	VIN=40V, f=2.3k	90	130	170	μA	
		VREF		384	400	416	mV	
		Толмах		20	27	34	μs	
Minimum On Tim	ie	TONMIN		0.75	1	1.25	μs	
Maximum Off Tir	ne	TOFFMAX		270	360	450	μs	
Minimum Off Tim	ie	TOFFMIN		2	2.4	2.8	μs	
ROVP Short OV	P Threshold ⁵⁾	VOVP_SHORT	ROVP short	123	136	149	V	
ROVP Open OVP Threshold ⁵⁾		Vovp_open	ROVP open	81	90	99	V	
OVP Hic-cup Time ⁵⁾		T _{OVP_HC}			560		ms	
MOSFET Break-down Voltage	JW1660X series	BV _{DSS}	Vg=0V Ids=250µA	650			V	
	JW1660M	Rds_on	Vg=15V		22	26		
MOSFET	JW1660A				17.5	21	a h m	
$R_{DSON^{5)}}$	JW1660B		RDS_ON	lds=0.5A		13.5	16	ohm
	JW1660C				6	7.2	1	
DS Leakage Current		I _{DSS}	Vg=0V Vds=500V			10	μA	
Thermal Protection Threshold ⁵⁾		OTPCHIP			150		°C	


Notes:

5) Guaranteed by design.

PIN DESCRIPTION

Pin	Name	Description
1	ROVP	LED OVP set pin
2	GND	Chip ground
3	NC	No connection
4	VIN	Power supply
5,6	DRAIN	The drain of internal power MOSFET
7	CS	Current sensing pin

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The JW1660X series is a constant current LED regulator, which applies to isolated Flyback LED lighting system. JW1660X series can achieve excellent line and load regulations, high efficiency and low system cost with few peripheral components.

Start Up

When the VIN exceeds the turn-on threshold V_{IN_ON} , the gate driver will start to switch after a 10ms' delay.

Constant Current Control

JW1660X series controls the output current from the information of the current sensing resistor.

The transformer primary and secondary peak current can be calculated as:

 $I_{PRI_PEAK} = V_{REF} / R_{CS}$

 $I_{\text{SEC}_\text{PEAK}} = N * I_{\text{PRI}_\text{PEAK}}$

The MOSFET turn-on-delay time can be calculated as:

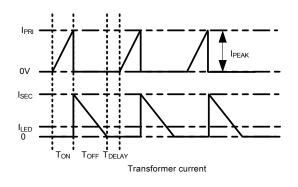
 $T_{DELAY} = T_{OFF} - T_{ON}$

The output LED average current can be calculated as:

$$I_{LED} \approx N^* V_{REF} / (4R_{CS})$$

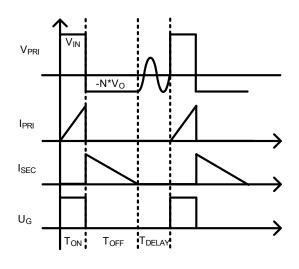
Where,

VREF is the reference voltage;


 $R_{\text{CS}}-$ the sensing resistor connected between the pin CS and pin GND.

IPRI_PEAK is the peak current of primary side;

ISEC_PEAK is the peak current of secondary side;


N is the primary to the secondary turns ratio of transformer;

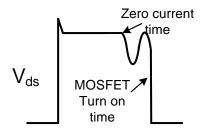
The transformer current waveforms are as follows:

Discontinuous Conduction Mode (DCM) Operation

JW1660X series works in the DCM of the inductor current. When the power MOSFET turns on, the inductor current increases from zero linearly. The turn on time of the MOSFET can be calculated as:

 $T_{ON} = I_{PRI_{PEAK}} \times L_{PRI} / V_{IN}$

Where,


 L_{PRI} – primary side inductance of transformer. L_{SEC} – secondary side inductance of transformer. V_{IN} – input voltage after rectification and filtering. V_{LED} – output voltage.

When the power MOSFET turns off, the inductor current decreases. The power MOSFET turns on again when the T_{DELAY} is over. The turn-off time can be calculated as:

$$\Gamma_{OFF} = I_{SEC_{PEAK}} \times L_{SEC} / V_{LEC}$$

JW1660M/JW1660A/JW1660B/JW1660C

When the inductor current decreases to zero, resonance takes place between the primary side of transformer, MOSFET output capacitors and stray capacitors. JW1660X series can detect the zero-current signals, and then calculate the delay time, then turns on the MOSFET. If JW1660X cannot get the zero current signals, the turn off time will be T_{OFFMAX}.

Over Temperature Protection

When the junction temperature is higher than OTP_{CHIP} , JW1660X series works in DCM by increasing the MOS OFF time to decrease the

LED current and help the chip cooling.

LED Open Protection

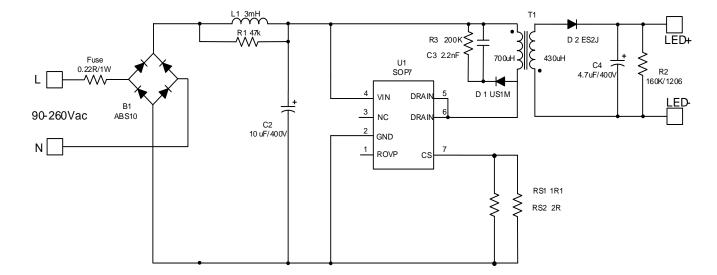
In the LED open condition, the system frequency increases and duty of each cycle increases accordingly. When the calculation of $V_{IN}*D/(1-D)$ is larger than V_{OVP} (set by ROVP pin), the power MOSFET is shut down and restarts after T_{OVP_HC} .

LED Short Protection

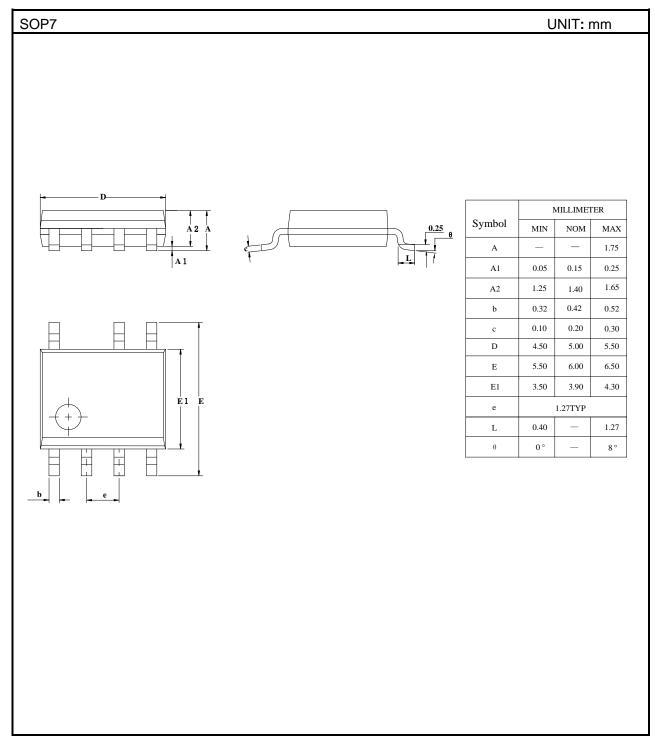
When the output is shorted, JW1660X series stops switching for T_{OFFMAX} until the next pulse.

PCB Layout Guidelines

- 1. Make the area of the power loop as small as possible in order to reduce the EMI radiation.
- JW1660X series should be kept away from noisy and heating components, such as power inductor and diode.


APPLICATION REFERENCE

Note: Information in the following reference design sections is not part of JoulWatt component specification. Customers are responsible for determining suitability of components chosen for their purposes and should validate their design implementation to make sure the proper system functionality.


This reference design is suitable for 6W non-isolated step-down LED driver, using JW1660B, with high efficiency and excellent line regulation.

Reference :

V_{IN}: 90VAC~260VAC V_{OUT}: 36V I_{OUT}: 165mA PF: >0.5

PACKAGE OUTLINE

IMPORTANT NOTICE

- Joulwatt Technology Co.,Ltd reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein.
- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- Joulwatt Technology Co.,Ltd does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- JOULWATT TECHNOLOGY CO.,LTD PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, SAFETY INFORMATION AND OTHER RESOURCES, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

Copyright © 2022 JoulWatt

All rights are reserved by Joulwatt Technology Co.,Ltd